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Abstract: Fuel injection as well as digital switching strategies in fluid power applications are not only famous
representatives of a large field of technology but also a main reason for the increasing interest in wave propagation
effects in research. While there is a huge number of works dealing with the pressure drop of different hydraulic
components in the steady state, many issues still remain unresolved in the transient regime, even in the case of
laminar fluid flow. A better understanding of these processes would be a great benefit as it would lead to a higher
accuracy of predicted system responses. In order to reach a higher degree of precision, the highly sophisticated
computational fluid dynamics (CFD) codes are a wide-spread tool. These codes solve the famous Navier-Stokes
equations in all three dimensions of space and therefore result in the full resolution of the pressure field as well as of
the velocity field. A very awkward topic of performing a CFD simulation is the choice of the boundary condition,
which should correspond to a physical one. At the latest when measurements for validation are carried out, the
boundary condition of the experimental setup should match the one used in the simulation. Especially the use of
a volumetric flow rate boundary condition is fraught with problems. Using a moving piston, a definite volumetric
flow rate could be forced on a boundary. In an experimental setup only the measurement of the position of the piston
would be necessary to use it in the simulation. This measurement has no backlash on the system, which is therefore
well separated. In this work a moving piston boundary condition including gap flow is implemented and used in
OpenFOAM. For this reason moving walls have to be used and the mesh has to change during the simulation.
Results of simulations done with this moving piston boundary condition are compared with simulations done with
an ordinary volumetric boundary condition.
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1 Introduction
While a lot of work has been done concerning the
steady state pressure drop of countless hydraulic com-
ponents, the transient effects have been treated like
an orphan in the hydraulic community for a long
time. With the increasing academic interests in dig-
ital switching strategies for fluid power applications -
just to mention one famous representative - also the
transient regime became focus of attention. In partic-
ular the well-known wave propagation effects caused
for instance by fast switching valves moved in the
center of interests. Contemporary processing power
has grown steadily and so computational fluid dynam-
ics (CFD) codes became a valuable and meanwhile
widespread tool. These highly sophisticated codes
solve the famous Navier-Stokes equations, which de-
scribe the motion of vicous fluids, and yield the ve-
locity field as well as the pressure field in all three
dimensions of space. One of the most challenging

tasks executing a CFD simulation is the choice of the
boundary conditions. Reason for this is, that, with
the exception of walls, boundary conditions are often
not known in a great detail from a physical point of
view. Nevertheless it’s quite common to use for in-
stance a constant value velocity, or a constant pressure
boundary condition. Thinking of a fluid power sys-
tem with its widenings and narrowings, its bends and
junctions, it’s anything but easy to find an appropriate
position for such an assumption. Knowing that simu-
lation results can be rather sensitive to aberrations of
the physical boundaries, this results in the strong de-
sire of a well defined boundary condition. Regarding
the fact, that walls as boundaries are the only ones,
which can be described in a physical correct way, the
idea comes up to use a moving piston as boundary
input. A schematic of this idea is shown in Fig. 1.
In order to build an experimental setup for measure-
ments, Lukas Muttenthaler [1] developed a hydraulic
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Figure 1: Principle of experimental setup

servo cylinder with an elastohydrostatic linear bearing
in his masterthesis. Measuring the velocity (or the po-
sition) of the piston also the volumetric flow through
the inlet would be known. The measurement of the
velocity compared to the measurement of the flowrate
itself has no backlash on the system, which would be
a great benefit.

For this work a moving piston boundary con-
dition including gap flow has been implemented in
OpenFOAM, an open source CFD package. De-
tails of this softwarepackage can be found on
http://www.openfoam.com/ [2]. Simulations have
been accomplished with this new boundary condi-
tion and are compared to a ordinary constant velocity
boundary condition.

2 Boundary condition

2.1 Moving Mesh

In order to use a moving piston boundary condition
in OpenFOAM, the use of moving meshes is neces-
sary. The mathematical background for instance can
be found in Ferziger and Peric [3]. Jasak and Tukovic
[4] describe the idea of automatic mesh motion for un-
structerd meshes and Kassiotis [5] explains different
stratgies for mesh motion in OpenFOAM. Basically
there exist two different approaches for the movement
of a boundary. On the one hand the original mesh
can be stretched and sqeezed in the direction of the
movement and on the other hand cells can be added
or removed when a maximum or minimum of a de-
sired cell size has been reached. These principles are
shown in Fig. 2. The first method is directly im-
plemented in OpenFOAM. All OpenFOAM solvers
with the letters ”DyM” (DynamicMesh) in the name
are capable of handling these moving meshes. For
the pupose of usage of one of these solvers the file
dynamicMeshDict in the constant folder as well as

the file pointMotionUz in the 0 folder is necessary.
The entries for these files can be found in the listings 1
and 2. For this work the ability of moving meshes has
been added to the solver sonicLiquidFOAM, a tran-
sient solver for laminar flow of a compressible liquid.
The movement of the cylinder has been defined in a
way it is shown in Fig. 3. The upper function corre-
sponds to the piston position, whereas the lower one
is equal to the velocity. The function of the position
can be written as

s (t) = s0 ·
(

1

2
− 1

2
· cos

(
t

T
· π
))

,

where s0 corresponds to the upstroke and T to the

length of time. For the case shown in Fig. 3 s0 =
20 mm and T = 10 ms. The function values for the
velocity at equidistant timesteps have been written in a
file (called tableFile in OpenFOAM), which can be di-
rectly used in OpenFOAM. The distance between two
timesteps has been chosen to be equal as the timestep
used in the CFD simulation. If the timestep of the
CFD simulation lies in between two timesteps of the
tablefile, this value is interpolated linearly automati-
cally.

Figure 2: Different approaches of mesh motion

2.2 Gap Flow

The flow through the gap between piston and cylin-
der indeed could be simulated with CFD, the calcula-
tion effort however would be immense. For this gap,
which is approximately 1

1000 of the cylinder diameter,
the spatial resolution would scale up, which would
also lead to a tiny temporal resolution. Because of
this reason the gap flow has been modeled with the
Reynolds equation as it can be found in Hori [6].
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m o t i o n S o l v e r L i b s
(

” l i b f v M o t i o n S o l v e r s . so ”
) ;

dynamicFvMesh dynamicMotionSolverFvMesh ;

s o l v e r v e l o c i t y C o m p o n e n t L a p l a c i a n ;

v e l o c i t y C o m p o n e n t L a p l a c i a n C o e f f s
{

component z ;
d i f f u s i v i t y un i fo rm ;

}

Listing 1: dynamicMeshDict

d i m e n s i o n s [0 1 −1 0 0 0 0 ] ;

i n t e r n a l F i e l d un i fo rm 0 ;

b o u n d a r y F i e l d
{

i n l e t
{

t y p e u n i f o r m F i x e d V a l u e ;
v a l u e un i fo rm 0 ;
un i fo rmValue t a b l e F i l e ;
t a b l e F i l e C o e f f s
{

f i l eName ” u1 ” ;
}

}

i n l e t g a p
{

t y p e u n i f o r m F i x e d V a l u e ;
v a l u e un i fo rm 0 ;
un i fo rmValue t a b l e F i l e ;
t a b l e F i l e C o e f f s
{

f i l eName ” u1 ” ;

}
}

o u t e r W a l l s
{

t y p e s l i p ;
}

f i x e d W a l l s
{

t y p e f i x e d V a l u e ;
v a l u e un i fo rm 0 ;

}
}

Listing 2: pointMotionUz
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Figure 3: Positon and velocity of moving piston

The equation reads as follows

∂

∂x

(
h · ∂p

∂x

)
= 6 · µ ·

(
(u1 − u2) ·

∂h

∂x
+ 2 · v2

)
.

In Fig. 4 all used variables in this formula can be
found. Assuming

∂h

∂x
= 0,

meaning that the height h remains constant, and fur-
ther

v2 = 0,

which is equivalent to the statement that the change of
height h with respect to time t vanishes, this leads to

∂

∂x

(
h · ∂p

∂x

)
= 0.

p1 > p2 p2

u2 = 0

u1 = u

Poiseuille flow

Couette flow
v2 = 0

h

h

x

z

u2 = 0

u1 = 0

v2 = 0

Figure 4: Theory of gap flow
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After integration and use of the boundary conditions
we get

p(x) =
p2 − p1
Lgap

·x+ p1.

The relation between pressure p and velocity u can be
written as

∂p

∂x
=

∂

∂z

(
µ · ∂u

∂z

)
which after integration and using the boundary values
leads to

u(z) =
1

µ
· ∂p
∂x
· z

2
· (z − h) + U ·

(
1− z

h

)
.

Out of this equation and out of Fig. 4 it can be
seen, that the gap flow it this case is a combination of
poiseuille flow (pressure flow) and couette flow (shear
flow).

From this the mean value

u(z) =
1

h
·

h∫
0

u(z) dz = − 1

µ
· ∂p
∂x
· h

12
+
U

2

of the velocity of the gap flow follows.

h

ū

ø d

Figure 5: Cross section of piston and cylinder (gap)

This value has been taken for the velocity of the outer
annulus of the cylinder, respectively the grey part in
the sketch in Fig. 5. Simulations with the explained
model with the data found in Tab. 1 and with no
massflow through the gap have been accomplished.
The difference is rather small and can be seen in Fig.
7. As the massflow through the gap is minor and as
there is no measurement for the pressure p1 on the
left side, meanwhile the massflow through the gap has
been chosen to be zero.

3 Simulation

Simulations have all been accomplished with
OpenFOAM , an open source software package. The

density ρ0 860 kg
m

kinematic viscosity ν 46 cSt.

dynamic viscosity µ ρ · ν Pa · s

pressure p1 50 bar

diameter cylinder d 10 mm

outer diameter D 60 mm

gap height h d
1000 mm

gap length Lgap 10 mm

length L 200 mm

length L1 30 mm

Table 1: Data

geometry as well as the mesh have been composed
with blockMesh, an OpenFOAM utility. Both can
be seen in Fig. 6. As it is shown in Fig. 1 - with the
exeption of the gapflow - all of the boundaries are
walls. For this work the results of simulations with
two differnt inlet boundary conditions have been
compared. The first one is equal to a constant velocity
boundary condition for the whole crosssection, but
the gap. The second one corresponds to a moving
piston boundary condition as it is explained before.
In this case also the inlet boundary is equivalent to
a wall. The fluid has the same velocity as the piston
and so the same velocity as in the first approach.
According to the first method the diameter of the
moving piston is two times the gap height smaller
than the diameter of the cylinder.
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Figure 7: Comparison gapflow and zero gapflow
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Figure 6: Geometry for CFD simulation
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Figure 8: Simulation result constant velocity input vs.
moving mesh

The mass flow through the face at L = 200 mm,
the average pressure of the cells right after the end
of the pipe (all cells in a cylinder with the diameter
ø d and a length of a cell layer after L = 200 mm),
as well as the pressure immediately after the piston,
which is proportional to the force on the piston, have
been recorded.

For the simulation an input velocity, meaning s0
and T have been defined. Further simulations have
been done multiplying the velocity with

√
2. This can

be interpreted as (approximately) doubling the energy
in the system. In order to keep the mass inflow con-
stant, the duration T has been divided by the same
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Figure 9: Simulation result constant velocity input vs.
moving mesh

amount.

4 Results

For the first simulations a stroke of s0 = 20 mm has
been chosen, while T = 10 ms. The time the waves
need to travel through a pipe of the length L = 200
mm back and forth can be expressed as follows. The
velocity of a wave can be written as

c0 =

√
K

ρ0
.
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Using a bulk modulus ofK = 14000 bar and a density
ρ0 = 860 kg

m3 the travelling speed results in

c0 = 1275.9
m
s
.

This means that a wave needs

∆t =
2 · L
c0

= 0.31 ms

to run through the whole pipe.
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Figure 10: Simulation result constant velocity input
vs. moving mesh
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Figure 11: Simulation result constant velocity input
vs. moving mesh

Thinking of T = 10 ms this results in a number
of wave reflections during the movement of the piston.
A simulation result corresponding to this fact is shown
in Fig. 8 and its fft in Fig. 9.
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Figure 12: Simulation result constant velocity input
vs. moving mesh
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Figure 13: Simulation result constant velocity input
vs. moving mesh

The blue lines represent the constant inflow and
the green ones the moving piston boundaries. The
only difference is the different travelling time of the
waves due to the reduced length of the pipe. The ver-
tical solid black lines in Fig. 9 represent the eigenfre-
quencies for a pipe with length L and the dashed line
for a pipe with the lengthL−s0. The eigenfrequencies
can be calculated with

fi =
c0
λi

where
λi =

4 · L
i

with i = 1, 2, 3, ...
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Figure 14: Simulation result constant velocity input
vs. moving mesh
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Figure 15: Simulation result constant velocity input
vs. moving mesh

Fig. 10 shows the mass flow of a simulation result
for T = 2 ms. For the simulations corresponding to
Fig. 11, 12 and 13 the value of T of the previous
simulation has been devided by the factor of

√
2. The

ffts in Fig. 14, 15, 16 and 17 match to the simulation
results of the massflow. Reducing the process time is
equivalent to increasing the velocity. Using T = 2 ms
leads to a velocity of approximately v = 15 m

s . These
numbers result in a Reynolds number of

Re =
u ·D
ν
≈ 2170.

Increasing the velocity further the fluid flow certainly
reaches the turbulent region. For all these simulations
turbulence models have been neglected. Reason for
this is the short simulated timeframe. In this case tur-
bulence has hardly chance to develop. For the purpose
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Figure 16: Simulation result constant velocity input
vs. moving mesh
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Figure 17: Simulation result constant velocity input
vs. moving mesh

of confirming this statement, the results of a simula-
tion carried out with a LES model compared to a sim-
ulation done without any turbulence model is shown
in Fig. 26 and 27. The maximum of the velocity in
this simulation reached v = 30 m

s .
As it can be seen in Fig. 10 and 14, respectively

in Fig. 11 and 15, there is much more damping for the
first eigenfrequency in the case of the moving piston
boundary as it is in the case for the uniform veloc-
ity input. For these simulations T = 2ms and T =
2√
2

ms. Contrary, the amplitude for the third eigen-
frequency is higher in the case of the moving bound-
ary, but disappears for the case when T = 2√

8
ms,

which can be seen in Fig. 17. In the third simula-
tion (Fig. 16) the amplitude for the moving piston of
the first eigenfrequency is higher. The more the dura-
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tion of the impulse equals the wave propagation time
the more the basic shape of the input function van-
ishes and the first eigenfrequency gets more and more
prominent. In Fig. 12 and 13 as well as in all the ffts a
shift in the eigenfrequencies due to the change of pipe
length is visible.

In Fig. 18, 19, 20 and 21 the pressures at the end
of the pipe is shown. As explained before the pressure
is the average pressure of cells in between a cylinder
with a diameter of d and the length of a cell layer.
This cylinder starts at L. In the first two simulations
with the moving piston boundary the pressure stood
nearly on a constant level, while in the case of the
uniform velocity already oscillations in the pressure
can be seen.

The pressure on the moving piston, which is pro-
portional to the force on the piston, can be seen in Fig.
22, 23, 24 and 25. Here a strong damping (of the first
eigenfrequency) caused by the moving piston bound-
ary also can be seen in the first two simulations. The
pressure amplitude gets rather high, so that the pres-
sure for the last two simulations even reaches nega-
tive values. These negative pressures are of course
unphysical. In a physical system these low pressures
would lead to cavitation.
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Figure 18: Simulation result constant velocity input
vs. moving mesh
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Figure 19: Simulation result constant velocity input
vs. moving mesh
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Figure 20: Simulation result constant velocity input
vs. moving mesh
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Figure 21: Simulation result constant velocity input
vs. moving mesh

WSEAS TRANSACTIONS on FLUID MECHANICS Clemens Fries, Bernhard Manhartsgruber

E-ISSN: 2224-347X 102 Volume 10, 2015



0 2 4 6 8 10
0

50

100

150

200

250

t [ms]

p
 (

p
is

to
n

) 
[b

a
r]

 

 

constant   

moving

Figure 22: Simulation result constant velocity input
vs. moving mesh
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Figure 23: Simulation result constant velocity input
vs. moving mesh
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Figure 24: Simulation result constant velocity input
vs. moving mesh
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Figure 25: Simulation result constant velocity input
vs. moving mesh
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Figure 26: Simulation result with vs. without turbu-
lence model

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Frequency (Hz)

|Y
(f

)|

 

 
moving

turbulent

Figure 27: Simulation result with vs. without turbu-
lence model

5 Conclusion

In this work two different boundary conditions have
been compared. In the first case a usual constant ve-
locity boundary condition has been taken for the inlet,
whereas in the second case the velocity has been pro-
duced by the motion of a piston. Simulations with
different inflow velocities, but equal mass inflow have
been accomplished. The first simulations with rather
low velocities compared to the wave propagation time
showed - as expected - a shift in the excited eigenfre-
quencies caused by the change of length of the pipe.
In the case of an excitation time in the order of the
travelling time of a wave, the first eigenfrequency of
the pipe is the most prominent one. A very inter-
esting phenomenon occurs, if the massflow starts to
rise again, while the input velocity converges to zero.
Obviously, the final reduction of the velocity of the
inflow compared with the rising massflow interact in

that way, that the amplitude of the first eigenfrequency
of the system is strongly diminished. Again there is
this shift in the eigenfrequencies caused by the change
of length of the pipe.
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